Difference between revisions of "Cognitive Load"

Difference between revisions of "Cognitive Load"

From Learning and training wiki

Share/Save/Bookmark
Jump to: navigation, search
 
(37 intermediate revisions by 7 users not shown)
Line 1: Line 1:
{{Term|COGNITIVE LOAD|Load on working memory during the learning process. Working memory corresponds to the part of the brain that provides temporary storage of new information, processes it and finally integrates it in the long-term memory. Whereas long-term memory is potentially unlimited, working memory has a limited capacity and, hence, selects only little information to be hold for few seconds and then registered in the long-term memory. While designing a learning process it is essential to take into account the limited capacity of working memory and avoid overloading it, because it is not possible to control what pieces of information will be selected and saved in the long-term memory. If learners are given too much information they might not even retain the essential one. Therefore, it is crucial to provide them only with necessary information in order to make sure they will remember what is needed to meet the [[Learning Objectives|learning objectives]]. Additional information can be included in the optional readings, but it is highly recommended to identify the difference between what is necessary and what is nice to know, in order to stress the importance for learners to retain at least the essential information. <ref>[http://en.wikipedia.org/wiki/Cognitive_load Wikipedia] (1 March 2010), [http://edutechwiki.unige.ch/en/Cognitive_load edutechwiki] (2 March 2010), [http://edtechdev.wordpress.com/2009/11/16/cognitive-load-theory-failure/ edtechdev.wordpress.com] (2 March 2010), [http://www.ncbi.nlm.nih.gov/pubmed/173635 www.ncbi.nlm.nih.gov] (18 March 2010), Cliff Atkinson, “The science of Making Your PowerPoint Memorable: Q&A with Nelson Cowan”, [http://www.beyondbulletpoints.com www.beyondbulletpoints.com] (June 2004), George A. Miller, The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity for Processing Information”, Psychological Review 63, 81-97 (1956) </ref>}}
+
{{Term|COGNITIVE LOAD|The amount of information that loads the working memory in a learning process. The working memory is the part of the brain that provides temporary storage for new information. It is responsible for processing the information and then integrating it in the long-term memory. The working memory has limited capacity. It can only process and select little information to be integrated in the long-term memory. It is impossible to control what information is selected for processing and long-term storage.  
  
 +
The cognitive load is a very important aspect to be considered while designing a learning process. The information provided to learners must be carefully selected and filtered so that they are confronted only with what is essential. Information that exceeds learners' working memory capacity overwhelms it, compromising the retention of essential elements. A major rule to follow is to clearly identify what is mandatory for the learners to know in order to meet the [[Learning Objectives|learning objectives]], differentiating it from complementary information. Only information that is necessary to know must comprise the core part of the contents of a learning process to facilitate processing and integration into the long-term memory, therefore increasing retention capacity. Necessary to know information, essential to meet the learning objectives, must form the compulsory study materials. Nice to know information, which complements the learning, should be referred as optional readings, included as additional materials or resources to be consulted by the learners once the mandatory core learning elements are retained.  <ref>[http://en.wikipedia.org/wiki/Cognitive_load Wikipedia] (1 March 2010), [http://edutechwiki.unige.ch/en/Cognitive_load edutechwiki] (2 March 2010), [http://edtechdev.wordpress.com/2009/11/16/cognitive-load-theory-failure/ edtechdev.wordpress.com] (2 March 2010), [http://www.ncbi.nlm.nih.gov/pubmed/173635 www.ncbi.nlm.nih.gov] (18 March 2010), Cliff Atkinson, “The science of Making Your PowerPoint Memorable: Q&A with Nelson Cowan”, [http://www.beyondbulletpoints.com www.beyondbulletpoints.com] (June 2004), George A. Miller, The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity for Processing Information”, Psychological Review 63, 81-97 (1956) </ref>
  
  
{{Tool|Taking care of cognitive load while designing a learning process|
+
'''See also''': [[Working Memory]]
=='''Step by Step'''==
+
#Keep in mind that:
+
#:*The working memory is limited 
+
#:*Too much information might overwhelm learners
+
#:*It is impossible to control which information will be registered in the long term memory
+
#Give learners the essential information only
+
#Identify:
+
#:*What is necessary to know (to be included in the compulsory readings)
+
#:*What is nice to know (to be included in the Optional Readings)
+
#Make sure learners will remember what is needed to meet the learning objectives
+
#Make sure the text included in each slide is not too long
+
#Make sure the amount of slides per lesson is reasonable
+
#Make sure each lesson covers one main topic only
+
  
 +
 +
__TOC__}}
 +
 +
 +
{{Tool|Considering the cognitive load while designing a course|
 +
=='''General Guidelines'''==
 +
#Remember:
 +
#:*The working memory has limited capacity to process and store information 
 +
#:*There is no control on which information is integrated into the long-term memory
 +
#:*The information provided to learners must be carefully selected, avoiding overwhelming the working memory
 +
#Identify:
 +
#:*What is necessary to know to meet the learning objectives
 +
#:*The compulsory study materials required to meet the learning objectives
 +
#:*What would be nice to know to complement the learning
 +
#Include what is necessary to know in the compulsory study materials
 +
#Include what is nice to know as optional or additional study materials
 +
#Make sure that each lesson in a particular course:
 +
#:*Provides reasonable amount of information (pages/slides) and does not overwhelm the working memory
 +
#:*Includes reasonable amount of text (pages/slides) and that sentences are short and easy to understand <ref>Cliff Atkinson, “The science of Making Your PowerPoint Memorable: Q&A with Nelson Cowan”, [http://www.beyondbulletpoints.com www.beyondbulletpoints.com] (June 2004), George A. Miller, The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity for Processing Information”, Psychological Review 63, 81-97 (1956) </ref>
  
 
=='''Job Aid'''==
 
=='''Job Aid'''==
[[Image:pdf.png]][[Media:Cognitive_Load.pdf]]}}
+
[[Image:pdf.png]] [[Media:Toolkit_Template_Cognitive_Load.pdf‎|Considering the cognitive load while designing a course]]}}
 +
 
  
 +
{{Addlink|Below you have the link to further resources  related to learning goals:}}
 +
{|border=1; width= 100%
 +
!Link
 +
!Content
 +
|-
 +
|[http://elearningindustry.com/5-ways-to-reduce-cognitive-load-in-elearning 5 Ways to Reduce Cognitive Load in eLearning]
 +
|The information processing capacity of learners is limited, so it's important that designers take this into account when creating eLearning courses. This article briefly discusses cognitive load theory and provides 5 ways to help reduce cognitive load  that will help learners process information more effectively.
 +
|-
 +
|[http://www.youtube.com/watch?v=B7-FpCFrMR0 e-Learning Content Retention Strategies (Video, 3 min)]
 +
|The content is meant to help instructors question whether they are setting up their courses for short term or long term results - when they define the learning objectives. It discusses content retention strategies and the drawbacks of only teaching for short term retention. This video touches on the importance to think about training for long term memory retention.
 +
|-
 +
|[http://donaldclarkplanb.blogspot.ch/2010/05/10-techniques-to-massively-increase.html 10 techniques to massively increase retention]
 +
|Article about increasing retention.
 +
|-
 +
|[http://www.learningsolutionsmag.com/articles/1080/ Research for Practitioners: How to Improve Knowledge Retention]
 +
|Brief article about improving knowledge retention.
 +
|}
  
 
==References==
 
==References==
 
<references/>
 
<references/>

Latest revision as of 17:17, 17 January 2014

Term2.png COGNITIVE LOAD
The amount of information that loads the working memory in a learning process. The working memory is the part of the brain that provides temporary storage for new information. It is responsible for processing the information and then integrating it in the long-term memory. The working memory has limited capacity. It can only process and select little information to be integrated in the long-term memory. It is impossible to control what information is selected for processing and long-term storage.

The cognitive load is a very important aspect to be considered while designing a learning process. The information provided to learners must be carefully selected and filtered so that they are confronted only with what is essential. Information that exceeds learners' working memory capacity overwhelms it, compromising the retention of essential elements. A major rule to follow is to clearly identify what is mandatory for the learners to know in order to meet the learning objectives, differentiating it from complementary information. Only information that is necessary to know must comprise the core part of the contents of a learning process to facilitate processing and integration into the long-term memory, therefore increasing retention capacity. Necessary to know information, essential to meet the learning objectives, must form the compulsory study materials. Nice to know information, which complements the learning, should be referred as optional readings, included as additional materials or resources to be consulted by the learners once the mandatory core learning elements are retained. [1]


See also: Working Memory


Contents


Toolkit.png Considering the cognitive load while designing a course

General Guidelines

  1. Remember:
    • The working memory has limited capacity to process and store information
    • There is no control on which information is integrated into the long-term memory
    • The information provided to learners must be carefully selected, avoiding overwhelming the working memory
  2. Identify:
    • What is necessary to know to meet the learning objectives
    • The compulsory study materials required to meet the learning objectives
    • What would be nice to know to complement the learning
  3. Include what is necessary to know in the compulsory study materials
  4. Include what is nice to know as optional or additional study materials
  5. Make sure that each lesson in a particular course:
    • Provides reasonable amount of information (pages/slides) and does not overwhelm the working memory
    • Includes reasonable amount of text (pages/slides) and that sentences are short and easy to understand [2]

Job Aid

Pdf.png Considering the cognitive load while designing a course


Link icon.png Web Resources
Below you have the link to further resources related to learning goals:
Link Content
5 Ways to Reduce Cognitive Load in eLearning The information processing capacity of learners is limited, so it's important that designers take this into account when creating eLearning courses. This article briefly discusses cognitive load theory and provides 5 ways to help reduce cognitive load that will help learners process information more effectively.
e-Learning Content Retention Strategies (Video, 3 min) The content is meant to help instructors question whether they are setting up their courses for short term or long term results - when they define the learning objectives. It discusses content retention strategies and the drawbacks of only teaching for short term retention. This video touches on the importance to think about training for long term memory retention.
10 techniques to massively increase retention Article about increasing retention.
Research for Practitioners: How to Improve Knowledge Retention Brief article about improving knowledge retention.

References

  1. Wikipedia (1 March 2010), edutechwiki (2 March 2010), edtechdev.wordpress.com (2 March 2010), www.ncbi.nlm.nih.gov (18 March 2010), Cliff Atkinson, “The science of Making Your PowerPoint Memorable: Q&A with Nelson Cowan”, www.beyondbulletpoints.com (June 2004), George A. Miller, The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity for Processing Information”, Psychological Review 63, 81-97 (1956)
  2. Cliff Atkinson, “The science of Making Your PowerPoint Memorable: Q&A with Nelson Cowan”, www.beyondbulletpoints.com (June 2004), George A. Miller, The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity for Processing Information”, Psychological Review 63, 81-97 (1956)